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Generalizations of the Hess integral are presented for different forms of the equations of motions of rigid body. The general 
conditions for the existence of this integral, which is due to the presence of additional explicit symmetries of the equations of 
motion, are pointed out. Problems of reducing the order, of the explicit integration and the qualitative analysis of the motion 
of a rigid body subject to these conditions are considered. Analogues of Hess cases for a gyroscope in gimbals and the Chaplygin 
equations describing the fall of a rigid body in a fluid are indicated for the first time. 0 2003 Elsevier Science Ltd. All rights 
reserved. 

1. THE HESS CASE IN THE EULER-POISSON EQUATIONS 

In Hamilton form, the Euler-Poisson equations describing the motion of a heavy rigid body with a fixed 
point have the form 

The Hamiltonian can be represented in the form 

H = ;W, AM) - /.Hr, y) 

where M is the kinetic momentum vector in the system of coordinates associated with the body, y is 
the unit vector of the vertical in the same system, A = I-’ is the inverse inertia tensor and r is the radius 
vector of the centre of mass of the body in the fixed system. 

The Poisson brackets for the variables M and y are as follows: 

{M, Mj> = -EijkM, {Mi, Yj> = -Eijk’)‘k { YiT Yj} = 0 0.2) 

In the case of any Hamilton function, Eqs (1 .l) allow of an area integral and a geometric integral of 
the form 

F, = My), F, = y2 = 1 (1.3) 

Only several general and special cases of the integrability of Eqs (1.1) are known for which, apart 
from these integrals, a further, additional, general (particular) integral exists. These cases are realized 
with additional constraints on the parameters of the system and on the initial conditions. They are the 
Euler, Lagrange, Kovalevskaya and Goryachev-Chaplygin cases. In the general case, Eqs (1.1) are 
unintegrable [ 11. 

Apart from the integrable cases of Eqs (1.1) some particular solutions are known, the majority of 
which have been cited in [2], for example. The most well known is the Hess solution which is defined 
by an invariant relation which is linear in the momentum M. 

For the Hess case, the Hamiltonian of the Euler-Poisson equations has the form [3] 

(1.4) 
a, <a2<a3 
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Fig. 1 

that is, the centre of mass in this case lies on the axis which is perpendicular to the circular cross-section 
of a gyration ellipsoid (Fig. 1). 

The invariant relation pointed out by Hess has the form 

F = dG;M, f ,/GzM3 = 0 (1.5) 

The different signs correspond to different circular cross-sections. 
An analytical investigation of Hess motion was carried out by Nekrasov [4] and, instead of elliptic 

quadratures for a single variable, the Rieeati equation is obtained. It is easily obtained (in the case of 
a variable 1) if Andoyer-Deprit variables are used [5]. A geometrical interpretation as a “loxodromic 
pendulum” has been given by Zhukovskii [6]. Later, using the Kovalevskaya method, an invariant Hess 
relation was given by Appel’rot [7] which attempted to fill certain gaps in Kovalevskaya’s work regarding 
the uniqueness of the general solution of the Euler-Poisson equations. 

Remarks. 1. The solution in the Hess case branches in the complex time plane. 
2. The dynamics of the reduced system can be different depending on the cyclic variable used in the reduction 

(the angle of natural rotation or the precession angle) [5]. 
The dynamics of the reduced system (1.4) in the variables (M, y) at high energies have been described previously 

[l]. In these variables, the integral (1.5) determines the specific torus on which unstable periodic solutions are found 
which, when p + 0, correspond to permanent rotations about the central axis. In this case, the torus is filled with 
trajectories which asymptotically approximate to these solutions. In a perturbation of the Euler-Poisson problem, 
for which the Hess conditions are satisfied, it is found that the pair of separatrices, corresponding to unstable 
permanent rotations, do not split. 

The description of the dynamics of the reduced system (with asymptotic behaviour) does not contradict 
Zhukovskii’s result, according to which the centre of mass of a body executes a quasi-periodic motion according 
to the law for a spherical pendulum since, unlike Eqs (1.1) the system describing the centre of mass is obtained 
by a reduction with respect to the angle of natural rotation about an axis perpendicular to a circular cross-section 
[S], rather than with respect to the angle of precession. 

2. ANALOGY WITH THE LAGRANGE CASE, CYCLIC VARIABLE 

The Hess case is similar in many respects to the Lagrange case and is associated with the existence in 
the system of a cyclic variable (an explicit symmetry of the Hamiltonian with respect to rotations) in 
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one of the levels of a certain “cyclic” integral. In order to show this explicitly, we will write the 
Hamiltonian (1.4) in a system of coordinates for which one of the axes, the Ox3 axis (Fig. 1) coincides 
with the axis which is perpendicular to the circular cross-section of the gyration ellipsoid (compare with 
another approach in [S]) 

H= $a;(M: + M;) + ajM: + 2bM,M,) - jty3 (2-l) 

Terms of the form M#z can be eliminated from the Hamiltonian by a rotation of the Oxi, Ox2 axes. 
(The transition matrix is determined by formula (3.8).) The Hess integral (1.5) now takes the form 

M,=O (2.2) 

The Hamiltonian (2.1) at the level&f3 = 0 is identical with the Lagrange Hamiltonian [5] and in order 
to discuss the reduced system which describes the dynamics of the angle of nutation of the centre of 
mass y3 = case, we can use the variables (for greater detail see [9]) 

At the level 1M3 = 0, they form a closed system of equations 

Ii1 = -a’,K,K,o,lo,, k2 = a’,Kfo,lo, - p’oI 
(2.4) 

6, = a;K2cr2, (r2 = -a;K201 

The Hamiltonian (2.1) can be written in the form 

H = iK’- ps2 + $M,(a;M, + 2bM,) 

The equation for o2 is identical with the quadrature for the vertical coordinate of a spherical pendulum 
161 

62 = 2mR2a2( 1 - of) 
( 
h - l.la - $‘I( 1 - cr:)) 

where R is the distance from the centre of mass to the fixing point, ai1 = 1, is the average principal 
moment of inertia, H = h and (M, y) = c are constants of the integrals. 

The precession angle u/ in this case (as in the Lagrange case) is completely defined by the solution 
of the reduced system (2.4). 

*ir= a’, K,lo, 

and is independent of the solution for the angle of natural rotation q(t). 

Remark. Levi-Civita has made a detailed study of the reduction in the order when there are invariant relations 
which are linear in the momenta. His basic results are contained in the well-known textbook [lo]. However, in 
applying his results to the dynamics of a rigid body, he paid no attention to the Hess case, concentrating on a more 
particular class of invariant relations which determine Staude rotations. 

3. CONDITIONS FOR THE EXISTENCE OF A HESS INTEGRAL FOR A 
GENERALIZED POTENTIAL FIELD 

We will now consider the extension of the Hess integral to the case when the potential depends on three 
fields and a generalized potential is present in the Hamiltonian 

H = ;W, A’M) + (M, W(% I% Y)) + U(a, P, Y) (3.1) 

where A’ = Ilaijl is a constant but not necessarily diagonal matrix and a, p, y are the projections of 
the unit vectors of the fixed system of coordinates onto the axes associated with the body. 
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A particular integral of the form 
M3-c=O, c=const (3.2) 

is a natural generalization of the Hess integral (1.5) in the special system of coordinates (for which the 
centre of mass lies on the 0, axis). 

The conditions for its existence can be represented in the general form 

a;, = a22, ai = 0 

i(U+cW,) = 0, iw,+w,+ca;3 = 0, iW,-W,-ca;, = 0 

i = (i,+ip+&) (3.3) 

,. a a Li = "'-q"'q' 6 = a, P, y 

We also give, in explicit form, the conditions for the existence of the Hess integral (3.2) for the 
particular form of system (3.1) for which 

3 3 3 

W = K + C B’i’ei, U = C (rp ei) + i C (e, di)e,) (3.4) 
i=l i=l i=l 

where K and q are constant vectors, el = a, e2 = /3, e3 = y and C(‘) are symmetric and B(‘) are arbitrary 
3 x 3 matrices (i = 1, 2,3). 

The conditions for the existence of a Hess integral for certain cases of system (3.1) with the potential 
(3.4) have been given in [ll, 121. 

Using relations (3.2) and (3.3) we find 

#) 
II = 

(0 
6229 12 = 

b(i) -b;‘:, bl’; = by; = 0 

C(j) = diag(ciy, c(1:, c$), K = (-~a;~, -~a;~, k3ai3), ri = (cb$, cbyi, r$ 

where k3 and r$) (i = 1,2,3) are arbitrary constants. The Hamiltonian can be represented in the explicit 
form 

H = ;(a;,& + M;) + 4,(M, + k3)2) + (M3 -c)(a;$f, + 43M2) + 

+ bi:)(M,a, + M,a,) + b~~)(M,a, - M,a,)b$i)M,a, + (3.5) 
1 (1) 2 + (M, - c)(b::)a, + bi:)a,) + $c,, (a1 + ai) + &)a$ + ry)a3 + . . . 

where the analogous terms containing p and y have been omitted. 
Using the kinetic momentum vector in the lixed axes N = ((M, a), (M, p), (M, r)) and the vector 

p = (a3, /3s, 7s) [5], the Hamiltonian (3.5) can be represented in the explicit form 

H = &‘,,N’+ (b,, N) + (b2 x p, N) + (r + cb, -cbl, p)t 

+ i(p. CP) + (M3 - c)f(M a9 P, Y) 

where 

b, = (b::‘, b::‘, b;:‘), (1) (2) (3) b, = (b,, 9 b,, 9 b,, 1, b, = (b::‘, b::), b:33)) 
c = diag($ - cl:), $3’ - cl;), cg - c$‘>, r= (r3 

(0, $’ (3) ,r3 1 

(3.6) 

in which case the functionf(M, a, l3, y) cannot be expressed in terms of the variables N and p since, 
otherwise, a reduction to an arbitrary level of the integral F = kf3, which corresponds to the Lagrange 
case, would be possible. 
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The Poisson bracket for the variables Ni,pi, (i = 1; 2, 3) has the form 

(Ni, NjI = EijkNk, {Niv PjI = &ijkPk {Pi, Pj) = 0 (3.7) 

Since the vectors N and p commute with the quantity M3 = (N, p), the equations of motion for them 
at the level Ms = c separate and are described by a Hamiltonian system in an e(3) algebra with the 
Hamiltonian (3.6) taken with the condition M3 - c = 0, that is, they are described by a system with two 
degrees of freedom. 

Hence, we obtain the following result: the phase flow of system (3.5) subject to the Hess condition 
is isomorphous with the flow of a spherical top (3.6) at a fixed level of constant area (N, p) = M3 = c. 
Consequently, the conditions of integrability at the level of the Hess integral are determined by the 
cases of integrability of a spherical top. 

Thus, when bi = b2 = b3 = r = 0, we obtain the integrable system of the Clebsch case (which, when 
c = 0, is also identical to the Neumann system) and, when b1 = b2 = b3 = 0 and C = 0, we obtain the 
Lagrange case for a single field. 

Remark. The general system (3.6) has three degrees of freedom and, hence, a further additional integral is 
necessary for it to be integrable at the level of the Hess integral. In the general case, it does not exist. 

A special system of coordinates has been used above, the axes of which do not coincide with the 
principal axes of the body and, in this system, the matrix A is non-diagonal. The matrix A can be 
transformed to diagonal form using the matrix 

U13 = -U31 = - 
U2-U1 

J 

(3.8) 

u3-a ’ l.412 = U21 = l.423 = U32 = 0 
1 

The conditions, imposed on the constants in the Hamiltonian (3.6) in this system of coordinates for 
the case of a single field, have been indicated by Hess [3]. 

In a system of coordinates for which the inertial tensor is diagonal (A = diag(al, a2, us)), the Hess 
integral (3.2) can be represented in the form [13] 

(3.9) 

We will now present the well-known Hess cases in the equations for the dynamics of a rigid body 
with Hamiltonian (3.1). 

The case of a single force field: U = U(y), W = W(y). 
1. U(Y), W(Y) = 0 is a special Hess case of the Euler-Poisson equations (see above). 
2. WY) = PY3, w = ( cai3, cus3, k3), k3 = const is a special case of Sretenskii integrability [13]. 
3. U(y) = (y, Cy), C = diag(ci, c2, c3), W = 0 is a special case of the integrability of Kirchoff’s 

equations which was pointed out for the first time by Chaplygin [14] from an analysis of the conditions 
for the existence of invariant relations which are linear in the momenta. The same result was later 
obtained in [ll] using the method of splitting of the separatrices. 

The case of two force fields when W = 0 [12]. Two special cases of system (3.5) were considered in 
[12] but the question of integrability was not discussed. The Hess integral is written in the form 
M3 = 0. 

In this case, the Hamiltonian of the reduced system (3.6) can be represented in the form 

H= ;a;,N2 + 1 (1) $c 1 (2) 
33 - cl:))P: + gc33 - 4’)PI 



232 A. V. Borisov and I. S. Mamayev 

By virtue of the relation (N, p) = M3 = 0, this case is isomorphous with the Neumann system, which 
is integrable. 

2. u = r3a3 + &,& + I$> + c33P5) 

The Hamiltonian of the reduced system has the form 

H = $z;,N* = r3p1 + ;(c,,-C&I; 

and corresponds to a spherical pendulum in a gravity field and in a Brun field perpendicular to it. 

Remarks. 1. The Hess integral, like the Lagrange integral, exists in a more complex system with five degrees of 
freedom [15]; a body suspended on a weightless rigid rod (string) moves in a gravity field. A further three involute 
integrals do not suffice for the integrability of this system, even when the above-mentioned integrals exist. They 
are unknown, and the sole case of integrability is associated with a complete separation of the motions when the 
point where the body is fixed to the string coincides with the centre of mass [16]. 

2. Generalizations of the invariant Hess relation to the motion of chains of heavy rigid bodies connected by 
hinges have been studied [17] and the conditions for the existence of semiregular precessions have been given. 

4. THE MOTION OF A RIGID BODY ALONG A SMOOTH PLANE 

The equations of motion of a rigid body along a smooth plane can also be represented in Hamiltonian 
form in an e(3) algebra (1.2) with Hamilton function [9] 

H = ;(A(M - K), IA(M - K)) + im(a, A(M - K)) + U(y) 
(4.1) 

a = rxy, A = (I+ma@a)-’ 

where K is the vector of the gyrostatic moment which is constant in the body, y is the vector of the 
normal to the surface, M is the kinetic momentum vector which is associated with the angular velocity 
by the formula 

M = Io+ma(a, co) (4.2) 

I is the constant matrix of the moments of inertia of the body with respect to the centre of mass and 
m is the mass of the body. 

The vector r(y) can be found from the equation 

y = -gradF(r)llgradF(r)J 

where F(r) = 0 is the equation of the surface of the body. 

Theorem [12]. Suppose a body is bounded by an axially symmetric surface, the axis of symmetry of 
which is perpendicular to the circular cross-section of a gyration ellipsoid of the form 

(M, II’ M) = const 

We shall select a system of coordinates one of whose axes (0~~) is perpendicular to a circular cross- 
section and the other axis (0~) is directed along the central axis of inertia. Then, if the potential energy 
depends solely on ‘y3 and the relations 

K, = 0, a;;‘K, + a;;)K, = ca;;’ 

are satisfied where A(“) = ]]af’ (1 = II’, then the invariant Hess relation takes the form 

Iv,-c=o 

Remark. In the chosen system of coordinates a$:’ = ag) = a?:’ # 0, ~$02) = a!$) = 0, and the equation of the body 
surface and the vector a have the form 
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Fig. 2 

2 2 F = F(x, +x2,x3) = 0. a = (-~(Y~)Y~,~(Y~)YI~O) 

where the function f depends solely on K. 

For a rigid body on a smooth surface, the Hamiltonian in the Hess case differs from the Hamiltonian 
in the Lagrange case in that there is an additional term of the form (kZs - c)f(M, r). This term vanishes 
at the level of the Hess integral, at which a transition to a reduced system, which is determined by the 
variables (2.3), is also possible. 

5. A GYROSCOPE IN GIMBALS 

A gyroscope in gimbals is a system of several bodies coupled to one another by cylindrical hinges (Fig. 2) 
[18, 191. 

We shall consider the case most frequently encountered in practice when the axes Le and L’, L and 
L’ are mutually perpendicular and intersect at a single point 0. We choose a fixed system of coordinates 
with origin at the point 0 and with the 02 axis directed along the axis of rotation Le, and we associate 
with the body a moving system of coordinates with origin at the point 0 and with the 02 axis directed 
along the axis L. Suppose a, p and y are the projections of the unit vectors of the fixed space onto the 
axes associated with the body, where the vector y corresponds to the OZ axis. 

The Lagrangian for a gyroscope in a potential field can be written in the form 

LJ p, IO) + ;ze(o’yy2y2 
) [ 
2 + $ 4m,Y2-02Y,)2+ 

iY2 
+(qy, +02y212 [;+I,2 

i. 11 
- U(a, p9 Y), f2 = r: + r: 

Y 

where w = (oi, Q os) are the projections of the angular velocity onto the axes associated with the body, 
I is the tensor of the moments of inertia of the rigid body about the point 0, Z” is the moment of inertia 
of the frame Se about the axis Le, and ZT, Z& 14 are the principal moments of inertia of the internal frame. 

The Hamiltonian form of system (5.1) can be obtained using the Legendre transformation 

M = dLl&o, H = (M, a)- LJ,,M 

Here, the Hamiltonian of the system in the general case has a cumbersome form. We will present it 
assuming that the body is symmetrical about the axis L (a2 = al) 



234 A. V Borisov and I. S. Mamayev 

H = ;a3M; + ;a,k(M; + M;) + ;a;k I;(M,y, + M,Y,)~ + 

+(l+(l:-z;)~](M,y,-M2Yd~]+u(oLB,Y) 

-I 
k , r2 = r: + Y22 

(5.2) 

A = I-’ = diag(a,, u2, as) 

For this system, an invariant relation of the Hess type. also exists provided that the axis along which 
an asymmetric rigid body is fixed in the internal frame S’ (Fig. 2) coincides with a perpendicular to the 
circular cross-section of the ellipsoid of revolution and the potential energy has the form U = U(a,, 
p3, ys). By choosing this axis as the Ox3 axis of the moving system of coordinates, the Hess integral can 
be represented in the form 

M3=0 (5.3) 

At the same time, the Hamiltonian differs from the Hamiltonian in the Lagrange case (5.2) in that 
there is a term of the form M&M, a, p, y). In this case, a reduction of the system using the variables 
(2.3) is also possible. 

6. THE HESS CASE IN CHAPLYGIN’S EQUATIONS 

We will now discuss a further case of the existence of an invariant Hess relation for a system which 
describes the fall of a rigid body in a fluid without an initial momentum [20]. Suppose the surface 
bounding the body is axially symmetric and the axis of symmetry is perpendicular to a circular cross- 
section of the gyration ellipsoid, which is similar to the conditions in the problem on the dynamics of 
a body on a smooth surface. The Hamiltonian can be represented in the form 

H = i(Mf + Mi + aM: + 2a,,M,M,) + $tt’Y: (6.1) 

The invariant relation in this case also has the form (5.3). As above, the dynamics of the angle of nutation 
is the same as in the Lagrange case. Taking account of the invariant relation (5.3), we find 

-sin96 = -ccosWsin28- pt2sin2Bcos9, c = (M, y) (6.2) 

When c = 0 a well-known equation is obtained which has been studied by Chaplygin [14] and Steklov 
Pll* 

Nevertheless, the angle of natural rotation cannot be obtained in this case by a single quadrature 
and is determined by the system 

ccose ci,=-- 
sin2 8 

+a,,M,, nil = W44 + pt2y2y3 

where 

Y3 = ~0.~9, y, = sinesincp, y2 = sinOcosq 

and the quantity M2 can be found from the relation 

M;+M; = c2+j;/(l-y;) 

The results of a previous qualitative analysis for the plane-parallel motion of a plate [22] hold for this 
case. 
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